Advanced Ramsey-Based Büchi Automata Inclusion Testing

نویسندگان

  • Parosh Aziz Abdulla
  • Yu-Fang Chen
  • Lorenzo Clemente
  • Lukás Holík
  • Chih-Duo Hong
  • Richard Mayr
  • Tomás Vojnar
چکیده

Checking language inclusion between two nondeterministic Büchi automata A and B is computationally hard (PSPACE-complete). However, several approaches which are efficient in many practical cases have been proposed. We build on one of these, which is known as the Ramsey-based approach. It has recently been shown that the basic Ramsey-based approach can be drastically optimized by using powerful subsumption techniques, which allow one to prune the search-space when looking for counterexamples to inclusion. While previous works only used subsumption based on set inclusion or forward simulation on A and B , we propose the following new techniques: (1) A larger subsumption relation based on a combination of backward and forward simulations on A and B . (2) A method to additionally use forward simulation between A and B . (3) Abstraction techniques that can speed up the computation and lead to early detection of counterexamples. The new algorithm was implemented and tested on automata derived from real-world model checking benchmarks, and on the Tabakov-Vardi random model, thus showing the usefulness of the proposed techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing

There are two main classes of methods for checking universality and language inclusion of Büchi-automata: Rank-based methods and Ramsey-based methods. While rank-based methods have a better worst-case complexity, Ramsey-based methods have been shown to be quite competitive in practice [9, 8]. It was shown in [9] (for universality checking) that a simple subsumption technique, which avoids explo...

متن کامل

Ramsey-Based Analysis of Parity Automata

Parity automata are a generalisation of Büchi automata that have some interesting advantages over the latter, e.g. determinisability, succinctness and the ability to express certain acceptance conditions like the intersection of a Büchi and a co-Büchi condition directly as a parity condition. Decision problems like universality and inclusion for such automata are PSPACE-complete and have origin...

متن کامل

Büchi Complementation and Size-Change Termination

We compare tools for complementing nondeterministic Büchi automata with a recent termination-analysis algorithm. Complementation of Büchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along ...

متن کامل

Revealing vs. Concealing: More Simulation Games for Büchi Inclusion

We address the problem of deciding language inclusion between two non-deterministic Büchi automata. It is known to be PSPACEcomplete and finding techniques that are efficient in practice is still a challenging problem. We introduce two new sequences of simulation relations, called multi-letter simulations, in which Verifier has to reproduce Refuter’s moves taking advantage of a forecast. We com...

متن کامل

Efficient Büchi Universality Checking

The complementation of Büchi automata, required for checking automata universality, remains one of the outstanding automata-theoretic challenges in formal verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. The best rank-based algorithm for Büchi universality, by Doyen and Raskin, employs a subsumptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011